Zuschriften

Cyclization

DOI: 10.1002/ange.200601575

Prins Cyclizations in Au-Catalyzed Reactions of Envnes**

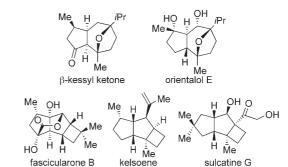
Eloísa Jiménez-Núñez, Christelle K. Claverie, Cristina Nieto-Oberhuber, and Antonio M. Echavarren*

The hydroxy- or alkoxycyclization of enynes **I** catalyzed by electrophilic transition-metal complexes usually takes place through cyclopropyl metal carbenes **II**, which react with nucleophiles R'OH to give intermediates **III** (Scheme 1). The reaction is then terminated by proto-demetalation of the alkenyl metal intermediate **III** to give **IV**.^[1,2]

$$Z = \begin{bmatrix} M^{+} \\ \hline I \end{bmatrix} \begin{bmatrix} M^{+}$$

Scheme 1. Different evolution of intermediate **III** by proto-demetalation of the Prins reaction with oxonium cations via **V** or **VI**.

We have now found that in the Au^I -catalyzed cyclization of enynes^[3,4] the alkenyl metal intermediate can be trapped with appropriate substituents, as shown in V and VI in a Prins cyclization. These new cyclizations allow the one-step synthesis of tricyclic skeletons, such as those of β -kessyl ketone^[5a] and orientalol E (Scheme 2),^[5b] from enynes with carbonyl groups and octahydrocyclobuta[α]pentalenes, such as fascicularone B,^[6] kelsoene,^[7] and sulcatine G,^[8] starting from cyclopropyl enynes.


Enynes 1a-c, bearing a carbonyl group at the alkenyl side chain, are cyclized to give oxatricyclic derivatives 2a-c and rearranged ketones 3a-c by using Au^I catalysts (Table 1). The

 [*] E. Jiménez-Núñez, Dr. C. K. Claverie, C. Nieto-Oberhuber, Prof. Dr. A. M. Echavarren Institut Catalá d'Investigació Química (ICIQ)
 Av. Països Catalans 16
 43007 Tarragona (Spain)
 Fax: (+34) 977-920-218
 E-mail: aechavarren@iciq.es

[**] We thank the MEC (project CTQ2004-02869 and predoctoral fellowships to E.J.-N. and C.N.-O.), the AGAUR (postdoctoral fellowship to C.K.C.), and the ICIQ Foundation for financial support. We also thank J. Benet-Buchholz (ICIQ) for the X-ray structures of **2c**

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Scheme 2. Representative sesquiterpenes with skeletons accessible by Au-catalyzed cyclizations.

Table 1: Au-catalyzed reaction of enynes 1 a-d.[a]

Entry	Enyne	[Au]	2/2′	Yield [%]	2/2′	3	Yield [%]
1	1 a	Α	2a	35	> 50:1	3 a	50
2	1a	В	2a	36	>50:1	3 a	34
3	1 a	C	2a	29	>50:1	3 a	50
4	1 a	AuCl	2a	58	>50:1	3 a	18
5	1 b	Α	2 b/2 b'	65	2.3:1	3 b	9
6	1 b	В	2 b	47	>50:1	3 b	44
7	1 b	C	2b	47	>50:1	3 b	52
8	1 b	AuCl	2b	79	>50:1	3 b	10
9	1 c	Α	2 c/2 c'	64	3.4:1	3 c	22
10	1 c	В	2 c	49	>50:1	3 c	45
11	1 c	C	2 c/2 c′	44	26:1	3 c	39
12	1 c	AuCl	2 c	84	>50:1	3 c	12
13	1 d	C	_	_		3 d	77

[a] Reactions at 23 °C with 3 mol% catalyst for 5–30 min (100% conversion). A: $[Au(PPh_3)Cl]/AgSbF_6$, B: $[Au(PPh_3)(MeCN)]SbF_6$,

reactions were completed at room temperature in 5–30 min. Aldehyde **1a** gave a mixture of tricycle **2a** (35%) and ketone **3a** (50%) with [AuCl(PPh₃)]/AgSbF₆ (catalyst **A**; Table 1, entry 1). Similar results were obtained with [Au(PPh₃)-(MeCN)]SbF₆ (catalyst **B**) and cationic complex **C**^[3] (Table 1, entries 2 and 3). A yield of 58% for **2a** was achieved by using AuCl itself (Table 1, entry 4). In the cyclization of ketones **1b** and **1c**, **2'b**, **c** were obtained as minor isomers, although their formation could be minimized by using Au¹ catalysts **B** or **C** (Table 1, entries 6/7 and 10/11). Results with catalysts **A** and **B** were not identical (compare entries 5/6 and 9/10), which suggest that Ag¹ may not be innocent in some of these cyclizations. [9] The best yields of **2b–c** were achieved with AuCl (Table 1, entries 8 and 12). Substrate **1d** led only to ketone **3d** (77%; Table 1, entry 13).

The structures of $2\mathbf{a}$ - \mathbf{d} were assigned by NMR spectroscopic analysis and by the X-ray diffraction determination of $2\mathbf{c}$. The *cis* configuration of ketones $3\mathbf{a}$ - \mathbf{d} was based on the coupling constant $^3J = 11.6$ Hz, as observed for $3\mathbf{a}$ and in NOESY experiments.

The carbonyl group acts as an internal nucleophile in the cyclizations of Table 1, as shown in **VII** (Scheme 3), thus

1a-c
$$[Au]$$
 VII
 $VIII$
 $Prins$
 $[Au]$
 $[Au]$

Scheme 3. Proposed mechanism for the cyclization of enynes 1 a-c.

forming oxonium cation **VIII**, which undergoes a Prins reaction^[11] to give **IX**. Intermediate **IX** is a substituted 4-tetrahydropyranyl cation, which has been shown to be aromatic.^[12] Elimination of the metal fragment forms tricycles **2a–c**. Alternatively, an elimination with fragmentation of the seven-membered ring via **X** leads to carbonyl compounds **3a–d**. Minor epimers **2'b, c** can arise by a competitive 2-oxonia—Cope rearrangement^[13] via **X** and **XI**.

The higher selectivity for the formation of tricycles **2a–c** using AuCl as the catalyst (Table 1, entries 4, 8, and 12), relative to the cationic complexes **A–C** could be explained by the faster elimination of the more electron-rich metal center in **IX**, whereas for complexes **A–C** the metal center does not bear a negative charge in intermediates **VIII–XI**.

Interestingly, 2c was also obtained from epoxide 4a by using catalyst B (Scheme 4). [14] On the other hand, the reaction of 4a with catalyst A gave a mixture of 2c/2'c and oxonorbornane 5, whose structure was confirmed by X-ray crystallography. [10] Epoxide 4b reacted with catalyst C to give ketone 3d, a result similar to that from 1d (Table 1, entry 13). The formation of 2c and 3c, d could proceed through intermediates XII, which suffer C—O bond cleavage followed by a 1,2-hydrogen shift to form VIII (R = iPr). Model epoxides do not isomerize to the corresponding carbonyl compounds under these reaction conditions. [15] We did not observed the direct addition of the ketone or the epoxide to the alkyne in any of these cyclizations.

A related Prins cyclization, which leads to tricycles with an octahydrocyclobuta[a]pentalene skeleton (see Scheme 2), was uncovered in the cyclization of cyclopropylenynes $\mathbf{6a}$ - $\mathbf{d}^{[17-19]}$ (Table 2). Thus, the reaction of ethyl ether $\mathbf{6a}$ with Au^I gave tricycles $\mathbf{7a}/\mathbf{7a}$ (Table 2, entries 1–3). Interestingly, syn- $\mathbf{7a}$ was favored with catalyst \mathbf{C} in the presence of traces of

Scheme 4. Gold-catalyzed reactions of epoxides $\mathbf{4a}$, \mathbf{b} . Ts = p-toluenemethanesulfonate.

Table 2: Aul-catalyzed reaction of enynes 6a-d.[a]

Entry	Enyne	[Au]	t	Product (ratio)	Yield [%]
1 ^[a]	6a	С	5 min	7a/7'a (1:1)	88
2 ^[b]	6a	C	5 min	7 a/7′ a (1:8)	81
3 ^[b,c]	6a	C	5 min	7a/7'a (1:1)	93
4 ^[b,d]	6a	AuCl	24 h	7 a/7' a (30:1) ^[e]	80 ^[e]
5 ^[a,f]	6b	C	5 min	7′ b	44
6 ^[b,f]	6b	C	5 min	7 b/7′ b (2.5:1)	39
7 ^[b,g]	6 c	C	5 min	7 c/7′ c (3.2:1)	60
8 ^[b,h,d]	6 c	AuCl	2 h	7 c/7′ c (12:1)	91
9 ^[b,g]	6d	В	5 min	7 d/7′ d (2:1)	60

[a] Reaction carried out in CH_2Cl_2 ($H_2O\approx 2$ ppm) with 3 mol% catalyst at 23 °C. [b] Reaction with 3–5 mol% water. [c] Reaction with NH_4Cl (2 equiv). [d] Reaction at 0 °C. [e] Average of five runs and determined by 1H NMR spectroscopic analysis. [f] E/Z=1:1. [g] Catalyst = 2 mol%. [h] Catalyst = 12 mol%.

water, whereas the use of AuCl led to the formation of **7a**, although the reaction was relatively slow (Table 2, entries 2 and 4). Low conversions (ca. 20%) were obtained when this reaction was carried out in the presence of 4-Å molecular sieves. Cycloprolylenynes **6b-d** reacted to give tricycles **7b-d** (Table 2, entries 5-9). Cyclobutanones were also formed as minor side products in these reactions.^[20,21]

A rationale for the results of Table 2 is provided in Scheme 5. Accordingly, **XIII** forms cyclopropyl metal carbene

Zuschriften

$$[Au(L)]^{+}$$

$$Z$$

$$Au(L)]^{+}$$

$$Au(L)]$$

$$Au(L)$$

$$Au$$

Scheme 5. Proposed mechanism for the gold-catalyzed reaction of enynes **6 a**–**d**.

XIV, which undergoes ring expansion to form XV. The alkenyl gold complex of XV could react with the oxonium cation to form XVI, which upon demetalation forms tricycles 7a-d by a Prins reaction. [11] The concerted pathway (XIV → XV) is favored with AuCl as the catalyst, whereas cationic Au^I complexes apparently favor a nonconcerted reaction via cyclopropyl-stabilized cation XVII, [22] which undergoes a non-stereospecific ring expansion to give mixtures of 7a-d/7'a-d. [23] However, as suggested by the dependence of the stereochemical outcome on the amount of water, we cannot exclude a pathway in which water opens intermediate XIV to form an alcohol, followed by a pinacol-type expansion. This process would result in an overall retention of configuration to form XV'.

Tricycles 7e/7'e were directly obtained when the synthesis of 6k was attempted by the cyclopropanation of dienyne 8 with the Furukawa reagent^[24] ($-65 \rightarrow 23$ °C; Scheme 6). This result is consistent with the mechanistic hypothesis of Scheme 5, in which the nonconcerted pathway is favored with Zn^{II} through intermediates XV', thus leading to syn,cis diastereomer 7'e as the major tricycle.

$$Z \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{CH}_2\text{Cl}_2} Z \xrightarrow{\text{DEt}} O\text{Et} \xrightarrow{\text{CH}_2\text{Cl}_2} Z \xrightarrow{\text{DEt}} O\text{Et} \xrightarrow{\text{Te}: 7'e} Z \xrightarrow{\text{Te}: 7'e: syn} O\text{Et}$$

$$X \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{Te}: 7'e: syn} O\text{Et}$$

$$X \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et}$$

$$X \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et}$$

$$X \xrightarrow{\text{Te}: 7'e: syn} O\text{Et}$$

$$X \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et}$$

$$X \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{CH}_2} O\text{Et}}$$

$$X \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et} \xrightarrow{\text{CH}_2\text{Cl}_2} O\text{Et}$$

$$X \xrightarrow{\text{CH}_2\text{$$

Scheme 6. Direct Zn^{II}-promoted cyclopropanation/cyclization of enyne **8**.

In summary, the alkenyl gold intermediate formed in the cyclization of enynes can be trapped in 5-exo-dig or 6-endo-dig Prins reactions to form an additional C-C bond. These $\mathrm{Au^{I}}$ -catalyzed cyclizations of functionalized enynes led to the ready assemblage of tricyclic carbon skeletons that are present in a number of naturally occurring compounds. Thus, for example, tricycle 2c, which possesses the same skeleton and relative configuration of β -kessyl ketone and orientalol E (Scheme 2), can be obtained in high yield in a

single step. The transformation of **1a-d** into ketones **3a-d** represents a new type of skeletal rearrangement of enynes.

Received: April 21, 2006 Published online: July 19, 2006

Keywords: cyclization \cdot enynes \cdot gold \cdot Prins reaction \cdot rearrangements

- Reviews of transition-metal-catalyzed reaction of enynes:
 a) G. C. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215-236;
 b) C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102, 813-834;
 c) S. T. Diver, A. Giessert, Chem. Rev. 2004, 104, 1317-1382;
 d) A. M. Echavarren, C. Nevado, Chem. Soc. Rev. 2004, 33, 431-436;
 e) S. Ma, S. Yu, Z. Gu, Angew. Chem. 2006, 118, 206-209; Angew. Chem. Int. Ed. 2006, 45, 200-203;
 f) C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez, A. M. Echavarren, Chem. Eur. J., DOI: 10.10221/chem.200600174.
- [2] a) M. Méndez, M. P. Muñoz, A. M. Echavarren, J. Am. Chem. Soc. 2000, 122, 11549-11550; b) M. Méndez, M. P. Muñoz, C. Nevado, D. J. Cárdenas, A. M. Echavarren, J. Am. Chem. Soc. 2001, 123, 10511-10520; c) C. Nevado, D. J. Cárdenas, A. M. Echavarren, Chem. Eur. J. 2003, 9, 2627-2635; d) C. Nevado, L. Charruault, V. Michelet, C. Nieto-Oberhuber, M. P. Muñoz, M. Méndez, M.-N. Rager, J. P. Genêt, A. M. Echavarren, Eur. J. Org. Chem. 2003, 706-713.
- a) C. Nevado, D. J. Cárdenas, A. M. Echavarren, Chem. Eur. J. 2003, 9, 2627-2635; b) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, Angew. Chem. 2004, 116, 2456-2460; Angew. Chem. Int. Ed. 2004, 43, 2402-2406; c) C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; d) C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárdenas, E. Buñuel, C. Nevado, A. M. Echavarren, Angew. Chem. 2005, 117, 6302-6304; Angew. Chem. Int. Ed. 2005, 44, 6146-6148; e) M. P. Muñoz, J. Adrio, J. C. Carretero; A. M. Echavarren, Organometallics 2005, 24, 1293-1300; f) C. Nieto-Oberhuber, S. López, M. P. Muñoz, E. Jiménez-Núñez, E. Buñuel, D. J. Cárdenas, A. M. Echavarren, Chem. Eur. J. 2006, 12, 1694-1702; g) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, Chem. Eur. J. 2006, 12, 1677-1693.
- [4] a) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc. 2004, 126, 8654–8655; b) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 11806–11807; c) M. R. Luzung, J. P. Markham, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 10858–10859; d) see also: A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709–713.
- [5] a) H. Hikino, Y. Takeshita, H. Hikino, T. Takemoto, S. Ito, Chem. Pharm. Bull. 1967, 15, 485–489; b) G.-P. Peng, G. Tian, X.-F. Huang, F.-C. Lou, Phytochemistry 2003, 63, 877–881.
- [6] H. Akasaka, Y. Shiono, T. Murayama, M. Ikeda, Helv. Chim. Acta 2005, 88, 2944–2950.
- [7] a) L. Zhang, M. Koreeda, Org. Lett. 2002, 4, 3755-3758; T. Bach, A. Spiegel, Synlett 2002, 1305-1307.
- [8] a) D. G. Taber, K. J. Frankowski, Org. Lett. 2005, 7, 6417-6421;
 b) G. Mehta, K. Screenivas, Tetrahedron Lett. 2002, 43, 3319-3321;
 c) E. Piers, A. Orellana, Synthesis 2001, 2138-2142;
 d) S. Fietz-Razavian, S. Schulz, I. Dix, P. G. Jones, Chem. Commun. 2001, 2154-2155.
- [9] For an example in which Ag^I catalyzes an additional process, see:
 C. Nevado, A. M. Echavarren, *Chem. Eur. J.* 2005, 11, 3155–3164.
- [10] See the Supporting Information for details.

- [11] General references: a) L. E. Overman, L. D. Pennington, J. Org. Chem. 2003, 68, 7143-7157; b) R. Jasti, C. D. Anderson, S. D. Rychnovsky, J. Am. Chem. Soc. 2005, 127, 9939-9945.
- [12] R. W. Alder, J. N. Harvey, M. T. Oakley, J. Am. Chem. Soc. 2002, 124, 4960 – 4961.
- [13] S. D. Rychnovsky, S. Marumoto, J. J. Jaber, Org. Lett. 2001, 3, 3815–3818.
- [14] For examples in which epoxides were used instead of carbonyl compounds in the Prins reactions, see: a) J. Li, C.-J. Li, Tetrahedron Lett. 2001, 42, 793–796; b) A. P. Dobbs, S. Martinović, Tetrahedron Lett. 2002, 43, 7055–7057.
- [15] See also: D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang, Z. Shi, Org. Lett. 2006, 8, 693–696.
- [16] a) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed. 2000, 39, 2285–2288; b) A. S. K. Hashmi, P. Sinha, Adv. Synth. Catal. 2004, 346, 432–438.
- [17] Rh¹-catalyzed reaction of cyclopropylenynes: a) P. A. Wender, H. Takahashi, B. Witulski, J. Am. Chem. Soc. 1995, 117, 4720– 4721; b) Z.-X. Yu, P. A. Wender, K. N. Houk, J. Am. Chem. Soc. 2004, 126, 9154–9155, and references therein.
- [18] Ru^{II}-catalyzed reaction of cyclopropylenynes: a) B. M. Trost,
 F. D. Toste, H. Shen, *J. Am. Chem. Soc.* 2000, 122, 2379–2380;
 b) B. M. Trost, H. C. Shen, D. B. Horne, F. D. Toste, B. G. Steinmetz, C. Korandin, *Chem. Eur. J.* 2005, 11, 2577–2590.
- [19] Ni¹-catalyzed cyclization of cyclopropylenynes: G. Zuo, J. Louie, J. Am. Chem. Soc. 2005, 127, 5798-5799.
- [20] Reaction of silyloxy analogues of 6a-d led to cyclobutanones by ring expansion of the cyclopropyl ring; details will be published in a full account of these results.
- [21] Ring expansion of alkynylcyclopropanols catalyzed by Au¹: J. P. Markham, S. T. Staben, F. D. Toste, *J. Am. Chem. Soc.* 2005, 127, 9708 9709.
- [22] J. Casanova, D. R. Kent, W. A. Goddard, J. D. Roberts, *Proc. Natl. Acad. Sci. USA* 2003, 100, 15–19.
- [23] Preliminary DFT calculations show a carbocationic structure for intermediates in which [Au(L)]=[Au(PH₃)], whereas for [Au(L)]=[AuCl]⁻ the intermediates resemble cyclopropyl gold(I) carbenes, such as XIV: D. J. Cárdenas, unpublished results.
- [24] J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53-58.

5581